The low-potency, voltage-dependent HERG blocker propafenone--molecular determinants and drug trapping.

نویسندگان

  • Harry J Witchel
  • Christopher E Dempsey
  • Richard B Sessions
  • Matthew Perry
  • James T Milnes
  • Jules C Hancox
  • John S Mitcheson
چکیده

The molecular determinants of high-affinity human ether-a-go-go-related gene (HERG) potassium channel blockade by methanesulfonanilides include two aromatic residues (Phe656 and Tyr652) on the inner helices (S6) and residues on the pore helices that face into the inner cavity, but determinants for lower-affinity HERG blockers may be different. In this study, alanine-substituted HERG channel mutants of inner cavity residues were expressed in Xenopus laevis oocytes and were used to characterize the HERG channel binding site of the antiarrhythmic propafenone. Propafenone's blockade of HERG was strongly dependent on residue Phe656 but was insensitive or weakly sensitive to mutation of Tyr652, Thr623, Ser624, Val625, Gly648, or Val659 and did not require functional inactivation. Homology models of HERG based on KcsA and MthK crystal structures, representing the closed and open forms of the channel, respectively, suggest propafenone is trapped in the inner cavity and is unable to interact exclusively with Phe656 in the closed state (whereas exclusive interactions between propafenone and Phe656 are found in the open-channel model). These findings are supported by very slow recovery of wild-type HERG channels from block at -120 mV, but extremely rapid recovery of D540K channels that reopen at this potential. The experiments and modeling suggest that the open-state propafenone binding-site may be formed by the Phe656 residues alone. The binding site for propafenone (which may involve pi-stacking interactions with two or more Phe656 side-chains) is either perturbed or becomes less accessible because of closed-channel gating. This provides further evidence for the existence of gating-induced changes in the spatial location of Phe656 side chains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trapping and dissociation of propafenone derivatives in HERG channels.

BACKGROUND AND PURPOSE Human ether-a-go-go related gene (HERG) channel inhibitors may be subdivided into compounds that are trapped in the closed channel conformation and others that dissociate at rest. The structural peculiarities promoting resting state dissociation from HERG channels are currently unknown. A small molecule-like propafenone is efficiently trapped in the closed HERG channel co...

متن کامل

Drug trapping in hERG K+ channels: (not) a matter of drug size?

Inhibition of hERG K+ channels by structurally diverse drugs prolongs the ventricular action potential and increases the risk of torsade de pointes arrhythmias and sudden cardiac death. The capture of drugs behind closed channel gates, so-called drug trapping, is suggested to harbor an increased pro-arrhythmic risk. In this study, the trapping mechanisms of a trapped hERG blocker propafenone an...

متن کامل

Drug trapping in hERG K+ channels: (not) a matter of drug size?† †The authors declare no competing interests.

Inhibition of hERG K channels by structurally diverse drugs prolongs the ventricular action potential and increases the risk of torsade de pointes arrhythmias and sudden cardiac death. The capture of drugs behind closed channel gates, so-called drug trapping, is suggested to harbor an increased pro-arrhythmic risk. In this study, the trapping mechanisms of a trapped hERG blocker propafenone and...

متن کامل

Calixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker

Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...

متن کامل

Voltage-dependent profile of human ether-a-go-go-related gene channel block is influenced by a single residue in the S6 transmembrane domain.

Many common medications block delayed rectifier K(+) channels and prolong the duration of cardiac action potentials. Here we investigate the molecular mechanisms of voltage-dependent block of human ether-a-go-go-related gene (HERG) delayed rectifier K(+) channels expressed in Xenopus laevis oocytes by quinidine, an antiarrhythmic drug, and vesnarinone, a cardiotonic drug. The IC(50) values dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 66 5  شماره 

صفحات  -

تاریخ انتشار 2004